Direct cross-coupling of aryl alkynyliodines with arylsulfinic acids leading to alkynyl sulfones under catalyst-free conditions

Leilei Wanga, Wei Weia,b,*, Daoshan Yanga, Huanhuan Cuia, Huilan Yueb, Hua Wanga,*

aInstitute of Medicine and Material Applied Technologies, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China

bKey Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China

Abstract

A facile and efficient one-pot method has been developed for the construction of alkynyl sulfones via direct cross-coupling reaction of aryl alkynyliodines and arylsulfinic acids. The present transformation could be accomplished under catalyst- and additive-free conditions, providing a series of alkynyl sulfones in moderate to good yields with favorable functional group tolerance.

Keywords:
Alkynyliodines
Sulfinic acids
Alkynyl sulfones
Additive-free
Catalyst-free

Sulfone-containing compounds have shown various interesting biological activities and constitute primary components of clinical pharmaceuticals and drug candidates. Furthermore, they can also serve as versatile building blocks in diverse range of synthetically useful transformations. In particular, alkynyl sulfones are an important class of sulfone-containing molecules, which exhibit widespread applications in organic synthesis because sulfonyl group acts not only as an activator to enhance the reactivity of the triple bond but also as an easily removable protective motif. In general, conventional methods for the synthesis of alkynylsulfones involve the oxidation of the alkynyl sulfides, sulfonylation of alkynylsilanes, and elimination reactions from \(\beta \)-keto sulfones.

Table 1

Optimization of reaction conditionsa.

<table>
<thead>
<tr>
<th>Entry</th>
<th>T(°C)</th>
<th>Solvent</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>DME</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>DME</td>
<td>51</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>DME</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>DME</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>110</td>
<td>DME</td>
<td>82</td>
</tr>
<tr>
<td>6</td>
<td>120</td>
<td>DME</td>
<td>77</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>THF</td>
<td>56</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>1,4-dioxane</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>DCE</td>
<td>68</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>CH\textsubscript{3}CN</td>
<td>59</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>EtOH</td>
<td>58</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>Toluene</td>
<td>17</td>
</tr>
<tr>
<td>13</td>
<td>100</td>
<td>DMF</td>
<td>Trace</td>
</tr>
<tr>
<td>14</td>
<td>100</td>
<td>DMSO</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>DME</td>
<td>56c</td>
</tr>
<tr>
<td>16</td>
<td>100</td>
<td>DME</td>
<td>61d</td>
</tr>
<tr>
<td>17</td>
<td>100</td>
<td>DME</td>
<td>85e</td>
</tr>
</tbody>
</table>

aReaction conditions: 1a (0.1 mmol), 2a (0.2 mmol), DME (2 mL), 100 °C, 12 h.

bIsolated yields based on 1a.

c1a (0.1 mmol), 2a (0.1 mmol).

d1a (0.1 mmol), 2a (0.15 mmol).

e1a (0.1 mmol), 2a (0.3 mmol).

*Corresponding authors at: Institute of Medicine and Material Applied Technologies, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.

E-mail addresses: weeweiqfnu@163.com (W. Wei), huawang_qfnu@126.com (H. Wang).

\url{https://doi.org/10.1016/j.tetlet.2017.11.029}
Alternative methods such as the sulfonylation reaction of alkynyl (aryl)iodonium salts by addition of arylsulfinate salts, the coupling of alkynyl halides with copper sulfinates, the addition of aryl sulfinates to ethynylbenzodioxolone derivatives (R-EBX), and the sulfonylation of arylacetylenic acids and arylacetylenes with sodium sulfinates have also been developed. However, almost all of these methods might suffer from certain limitations such as the tedious work-up procedures, unstable or toxic starting materials, and complex reaction mixtures or low selectivity. Therefore, the development of direct and more efficient methods to access alkynyl sulfones in terms of operational simplicity, availability of starting materials and environmental sustainability is still in constant demand in the synthetic chemistry.

With our continued interest in the construction of sulfone-containing compounds, herein, we wish to present a simple and efficient method for the construction of alkynyl sulfones through the direct cross-coupling of aryl alkynyliodines and arylsulfonic acids under catalyst- and additive-free conditions (Scheme 1).

The initial exploration of this reaction was carried out using (iodoethynyl)benzene and 4-methylbenzenesulfonic acid as coupling partners to determine the optimal reaction conditions. When the model reaction was conducted in DME at room temperature under catalyst- and additive-free conditions, the desired product was isolated in 34% yield (Table 1, entry 1). To our delight, the reaction efficiency was significantly improved along with the increase of reaction temperature, and the highest yield (86%) was obtained when the reaction was carried out at 100°C (Table 1, entry 4). Then, the solvent effect was investigated. The reaction performed in DME gave higher yield than in other ether solvent such as THF or 1,4-dioxane (Table 1, entries 4, 7, 8). When reaction was conducted in DCE, CH3CN or EtOH, the corresponding product

Table 2: Catalyst-free cross-coupling of aryl alkynyliodines with arylsulfonic acids to access alkynyl sulfones.

| R1 | R2 | DME, 100°C | 3a (86%) | 3b (90%) | 3c (88%) | 3d (79%) | 3e (64%) | 3f (83%) | 3g (80%) | 3h (72%) | 3i (83%) | 3j (73%) | 3k (53%) | 3l (70%) | 3m (71%) | 3n (79%) | 3o (75%) | 3p (84%) | 3q (68%) | 3r (56%) | 3s (76%) | 3t (79%) | 3u (80%) | 3v (60%) | 3w (73%) | 3x (88%) |
|--------|-------------|------------|
| I | SO₂H | |
| 1a | 2a | |

* Reaction conditions: 1 (0.1 mmol), 2 (0.2 mmol), DME (2 mL), 100 °C, 12 h.
* Isolated yields based on 1.
3a was obtained in moderate yields (Table 1, entries 9–11). Nevertheless, low yields or none of the desired product was detected when toluene, DMF, or DMSO was used alone as the solvent (Table 1, entries 12–14). Also, the reaction efficiency was obviously low with the decreasing of 2a loading (Table 1, entries 15 and 16). The highest yield was provided when the ratio of 1a:2a is 1:2 (Table 1, entry 4). A further increase in the quantity of 2a did not improve the reaction efficiency (Table 1, entry 17). As a consequence, the reaction conditions used in entry 4 were determined to be the optimized conditions.

With the optimal reaction conditions in hand, the substrate scope of this coupling reaction was tested (Table 2). Generally, aromatic alkynylidines with a wide range of aryl substituents including electron-rich substituents and electron-poor substituents all successfully delivered the desired products in satisfactory yields (3b–3l). In addition, 1-(iodoethynyl)naphthalene could undergo the transformation smoothly, furnishing its corresponding product (3m) in good yield. Remarkably, heteroaryl alkynylidine such as 3-(iodoethynyl)phenylene was also suitable for this reaction, affording the desired product 3n in 79% yield. Next, we also examined the scope of various sulfinic acids as the coupling partners. Both electron-donating (Me, OMe) and electron-withdrawing substituents (Cl, Br, CF3) on the aryl groups of sulfinic acids were well tolerated in this process to give the desired products (3q–3v) in moderate to good yields. The ortho substituted sulfinic acids could also effectively react with (iodoethynyl)benzene leading to the product 3w in good yield. Moreover, naphthalene-1-sulfinic acid was compatible with the standard conditions to provide the desired product 3x in 88% yield.

Several control experiments were carried out to elucidate the possible reaction mechanism. Initially, none of the alkynyl sulfone 3a was detected when the reaction of phenylacetylene 4a with 4-methylbenzenesulfonic acid 2a was conducted under the optimized conditions (Scheme 2(a)). Furthermore, when the preformed β-iodovinyl sulfone 5a was subjected separately under the standard conditions, the desired product 3a was also not observed (Scheme 2(b)). The above results suggested alkyne and β-iodovinyl sulfone should not be the key intermediates in the present reaction system. Next, the model reaction was significantly inhibited when 2,2,6,6-tetramethyl-1-piperidinylxoxy (TEMPO), a well known radical-capturing species, was added into reaction system, indicating that the possible involvement of a radical process in the present transformation (Scheme 2(c)). Moreover, in addition to product 3a, the homocoupling diyne was also detected by GC-MS in the model reaction (see SI), which indicated an alkynyl and iodine radical might involve in this reaction system (Scheme 2(d)).

On the basis of these results, a possible reaction pathway for this coupling reaction was proposed as shown in Scheme 3. Firstly, sulfinic acid 2a gave the sulfonyl radical 6a with the help of iodine radical, which was generated in situ from homocoupling of alkynylidine. Then, the selective addition of sulfonyl radical 6a to allynylidine 1a would lead to formation of alkynyl radical 7a. Finally, 7a underwent β-fragmentation of an iodine radical that then abstracted a H-atom from the sulfinic acid 2a to sustain the chain and produce the desired alkynyl sulfone 3a. Nevertheless, another possible pathway involving the cross-coupling of sulfonyl radical with alkynyl radical that generated in situ from alkynylidined might also be involved in this reaction system.

In summary, we have successfully developed a convenient and efficient catalyst-free method for the construction of alkynyl sulfones through the direct cross-coupling of aryl alkynyliodines and arylsulfonic acids. The present protocol, which utilizes readily available starting materials, simple operation, and environmentally benign conditions, provides a highly attractive approach to various alkynyl sulfones in moderate to good yields. Preliminary mechanistic studies indicated that a radical process might be involved in the present reaction. Further investigation of the detailed reaction mechanism and synthetic application are ongoing in our lab.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21302109, 21302110, and 21675099), the Natural Science Foundation of Shandong Province (ZR2015JL004 and ZR2016JL012), the Open Projects Program of the Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and International Cooperation Project of Qinghai Province (2017-HZ-806).

A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.tetlet.2017.11.029.

References

(a) Lopez de Compadre RL, Pearlstein RA, Hopfinger AJ, Seyde JK. J Med Chem. 1987;30;900;
(b) Yang H, Carter RG, Zakharov LN. J Am Chem Soc. 2008;130:9238;
(c) Desrosiers JN, Chaette AB. Angew Chem Int Ed. 2007;46:5955;
(d) Kotha S, Chavan AS. J Org Chem. 2010;75;4319;
3. (a) Selected reviews: Back TG, Clary WN. Curr Opin Chem. 2010;110:4498;
4. (a) Selected examples: Huang DF, Shen TY. Tetrahedron Lett. 1993;34:4477;
(b) Hlastra DJ, Ackerman J. J Org Chem. 1994;59:6184;
(c) Spencer J, Pfeffer M, DuCian A, Fischer I, J Org Chem. 1995;60:1005;
(d) Riddell N, Tam W. J Org Chem. 1934;2006:71;
(e) Takeda A, Ando M, Sugita T, Tsibouchi A. Org Lett. 2007;9;2875;
5. (a) Truce WE, Hill HE, Boudakian MM. *J Am Chem Soc.* 1956;78:2760;
 (b) Miller SI, Orzech CE, Welch CA, Ziegler GR, Dickstein JI. *J Am Chem Soc.*
7. (a) Lee JW, Oh DY. *Synlett.* 1990;290;
 (b) Clasby MC, Craig D. *Synlett.* 1992;825.
 (c) Iwata N, Moroioka T, Kobayashi T, Asada T, Kinoshita H, Inomata K. *Bull Chem Soc Jpn.*
 1992;65:1379;
 1993;58:5235;
 (b) Liu Z-D, Chen Z-C. *Synth Commun.* 1997;1992:22;
 (c) Hamnett DJ, Moran WJ. *Org Biomol Chem.* 2014;12:4158;
 (b) Liu Z-D, Chen Z-C. *Synth Commun.* 2012;12:22;
 2014;12:7678;
15. (a) Xie J, Shi S, Zhang T, Mehrkens N, Rudolph M, Hashmi ASK. *Angew Chem Int Ed.*
 2015;54:6046;