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ABSTRACT: The sulfhydryl-directed peri-selective C−H bond activation
and tandem cyclization of naphthalene-1-thiols with alkynes proceed
efficiently. Most products of naphthothiopyrans with various substituents
are achieved in good yields under rhodium catalysis. This protocol has some
advantages over the traditional methods in synthesizing naphtho[1,8-
bc]thiopyrans in terms of stable coupling substrates, simple operation, peri-
selectivity, and atom and step economy.

In the past decades, C−H bond activation has developed
rapidly, which efficiently constructs a variety of organic

molecules without the need to convert C−H bonds into other
functional groups.1 Directing groups have a marked impact on
these reactions, and they may affect the yields of reactions,
control the reaction sites, or even determine whether the
reactions can proceed efficiently.2 Among various guiding
groups, sulfur-containing groups are a common type of
directing group, which can promote the construction of
sulfur-containing compounds.3 However, most of the currently
reported sulfur-containing groups such as thioether,4 sulf-
oxide,5 thiocarbonyl,6 and phosphine sulfide7 directed C−H
bond activations usually produce the sulfur-containing open
chain products (Scheme 1a). In this case, directing groups of
these reactions are introduced into the products as
substituents, making it generally difficult to remove. Unlike
these sulfur-containing directing groups, sulfhydryl can under-
go further cyclization with corresponding coupling products
through some elementary reactions such as reduction
elimination and dehydration condensation when it is used as
the directing group.8 As a result, sulfhydryl can be employed as
part of the products and facilitate the construction of sulfur-
containing heterocyclic compounds. Although sulfhydryl is the
simplest and widely existing sulfur-containing group,9 the C−
H bond activations aided by sulfhydryl are rarely reported.
Therefore, the creation of sulfhydryl-directed C−H function-
alization protocols involving diverse metals and multiple
coupling parts is urgently needed.
Naphtho[1,8-bc]thiopyrans have received extensive atten-

tion due to their broad functional properties.10 However,
investigations on the synthetic methods of such motifs are
rather limited.11 Recently, the team of Miura reported the
coupling reactions of alkynes or aryl boronates with 1-
(methylthio)naphthalenes under rhodium catalysis. The
coupling products can be converted into naphtho[1,8-bc]-

thiopyrans through additional reactions in 1−3 steps (Scheme
1b).12 Very recently, we have reported a sulfhydryl-directed
peri-selective C−H activation and annulation of naphthalene-1-
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Scheme 1. C−H Activations Aided by Sulfur-Containing
Groups
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thiols using diazo compounds under iridium catalysis (Scheme
1c).8 Although it is convenient and efficient, the possible
dangers caused by the exothermic phenomenon when releasing
nitrogen and low stability of diazo compounds might be
difficult to avoid. With these background factors in mind and
combined with previous reports in the peri-selective C−H
activation of naphthalene,13 we herein seek to build naphtho-
[1,8-bc]thiopyrans through sulfhydryl-directed C−H activation
and cyclization of 1-naphthylthiophenols with alkynes under
rhodium catalysis (Scheme 1d). This method has some
advantages over the traditional methods in stable coupling
substrates, simple operation, peri-selectivity, and atom and step
economy. To the best of our knowledge, we have initially
reported the sulfhydryl-directed C−H functionalization under
rhodium catalysis.
Initially, naphthalene-1-thiol (1a) reacted with 1,2-dipheny-

lethyne (2a) accompanied by [Cp*RhCl2]2 and Cu(OAc)2·
H2O in DMF at 130 °C under a nitrogen atmosphere for 12 h,
and product 2,3-diphenylbenzo[de]thiochromene (3aa) was
achieved in 46% yield (Table 1, entry 1). Regarding additives,

NaOAc gave the highest yield (73%) (entries 2−5). Then,
several solvents including DMSO, 1,4-dioxane, CH3OH, and
CH3CN were tested, and CH3CN proved to be the most
appropriate solvent for this conversion (entries 2, 6−9). No
product was obtained or the yields of 3aa were not higher than
18% when no [Cp*RhCl2]2 or other catalysts were used
(entries 10−13).
Under the optimized conditions, the scope and generality of

substrates were investigated (Scheme 2). Initially, the
universality of alkynes was studied. When some symmetric
diarylacetylenes with various substituents at different phenyl
positions were treated with naphthalene-1-thiol (1a), low to
good yields (30−90%) of naphtho[1,8-bc]thiopyrans (3aa−
3aj) were achieved. Meanwhile, heterocyclic alkyne 1,2-
di(thiophen-2-yl)ethyne (2k) participated in this conversion,
affording 3ak in 87% yield. When 1a was treated with

unsymmetr ica l heterocycl ic aromat ic a lkynes 2-
(phenylethynyl)pyridine (2l), 2-(phenylethynyl)pyrimidine
(2m), and 2-(phenylethynyl)quinoline (2n) respectively,
three regioisomeric products (3al−3an) with heterocycle
adjacent to the S atom were obtained in 62−70% yields.
This may have resulted from the complexation between the N
atom of alkynes and rhodium in the coordination and
migratory insertion process. The reaction involving alkyl aryl
alkyne 1-phenyl-1-propyne (1o) proceeded smoothly and
provided a single product 3ao in 66% yield. This is due to the
high regioselective insertion of alkynes with the phenyl-
substituted carbon atom close to the heteroatom.14 3al was
verified by the analysis of single-crystal X-ray diffraction
(CCDC 2019641). Products 3am, 3an, and 3ao exclude
another isomer through their 1H−1H NOESY spectra.
However, a mixture (1:0.5) of products 3ap and 3ap′ was
obtained with a total yield of 71% when naphthalene-1-thiol
(1a) reacted with another unsymmetrical alkyne ethyl 3-
phenylpropiolate (2p). When the reaction conditions such as
oxidants, additives, solvents, and reaction temperature are
changed, the selectivity of the mixture was not significantly
improved (3ap:3ap′ ≈ 1:0.5, 0−69% yields). In addition, some

Table 1. Optimization Studiesa

entry catalyst additive solvent yieldb (%)

1 [Cp*RhCl2]2 DMF 46
2 [Cp*RhCl2]2 NaOAc DMF 73
3 [Cp*RhCl2]2 KOAc DMF 69
4 [Cp*RhCl2]2 CsOAc DMF 47
5 [Cp*RhCl2]2 HOAc DMF 34
6 [Cp*RhCl2]2 NaOAc DMSO 15
7 [Cp*RhCl2]2 NaOAc 1,4-dioxane 76
8 [Cp*RhCl2]2 NaOAc CH3OH 20
9 [Cp*RhCl2]2 NaOAc CH3CN 88
10 − NaOAc CH3CN 0
11 Cp*Co(CO)I2 NaOAc CH3CN 0
12 [Cp*IrCl2]2 NaOAc CH3CN 18
13 [(p-cymene)RuCl2]2 NaOAc CH3CN 7

aReaction conditions: 1a (0.2 mmol), 2a (0.3 mmol), catalyst (5 mol
%), Cu(OAc)2·H2O (2 equiv), additive (0.2 equiv), solvent (1.5 mL),
130 °C, 12 h, under N2.

bIsolated yields.

Scheme 2. Substrate Scopea

aReaction conditions: 1 (0.2 mmol), 2 (0.3 mmol), [Cp*RhCl2]2 (5
mol %), Cu(OAc)2·H2O (2 equiv), NaOAc (0.2 equiv), CH3CN (1.5
mL), 130 °C, 12 h, under N2, isolated yield.
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reactions involving open-chain alkynes can occur smoothly,
and the target compounds can be obtained in 68−73% yields.
Unfortunately, the reaction between ethynylbenzene and 1a
failed to afford any naphthothiopyrans.
Moreover, this protocol was applied to various substituted

naphthalene-1-thiols (1b−1e). As expected, moderate to high
yields can be expected successfully for naphtho[1,8-bc]-
thiopyran derivatives. Among them, electron-rich naphtha-
lene-1-thiols reacted nicely with alkynes and afforded products
(3ba−3ca, 3ea) in 74−92% yields. However, product 3da was
obtained in moderate yield (47%), when 4-bromonaphthalene-
1-thiol (1d) bearing an electron-withdrawing group was tested.
Much to our delight, the reactions between 2a and
phenanthrene-9-thiol (1f) or pyrene-1-thiol (1g) could
proceed smoothly with products of 3fa and 3ga in 77% and
76% yields, respectively. However, no corresponding product
was obtained when 4-methylbenzenethiol reacted with 2a. This
may be because the four-membered rhodacycle intermediate
formed by the reaction of 4-methylbenzenethiol and the
rhodium catalyst is unstable, which is not conducive to the
occurrence of C−H activation.
Next, the synthetic potential was explored. Initially, the

gram-scale reaction achieved 3aa in 79% yield (Scheme 3a).

Then, sulfur-directed C−H olefination reactions of 3aa
happened smoothly, and the olefination product ethyl (E)-3-
(2-(3-phenylbenzo[de]thiochromen-2-yl)phenyl)acrylate (5)
was mainly obtained in 68% yield (Scheme 3b). In addition,
an 8% yield of the diolefination product 6 (diethyl 3,3′-(2-(3-
phenylbenzo[de]thiochromen-2-yl)-1,3-phenylene)(2E,2′E)-
diacrylate) was formed in the reaction. By changing the oxidant
to Cu(OAc)2·H2O and adjusting the ratio of reactants,
reaction temperature, and time, the diolefination product 6
could be mainly achieved in 61% yield (Scheme 3c). In
addition, compound 5 can be converted to 6 with a yield of
72% under rhodium catalysis (Scheme 3d). These examples

demonstrate the value of this protocol in the construction of
naphtho[1,8-bc]thiopyrans.
Furthermore, several mechanistic experiments have been

conducted. First, 81−84% yields of 1a were recovered in the
hydrogen−deuterium exchange experiments, showing no H/D
exchange (Scheme 4a). It should disclose that the C-8 position

C−H bond cleavage of naphthalene-1-thiol might follow an
irreversible process. Second, the deuterium competition
reaction (Scheme 4b) and two parallel independent reactions
(Scheme 4c) of substrates 1a and 1a-d7 were carried out,
manifesting kH/kD values of 2.5 and 1.9, respectively. Both
results indicate that the rate-determining step might involve
the peri-selective C−H bond cleavage of naphthalene-1-thiol.
Third, the 1H NMR spectrum of the intermolecular
competition experiment between 4-methylnaphthalene-1-thiol
(1b) and 4-bromonaphthalene-1-thiol (1d) shows a ratio of
products 3ba and 3da of 1:0.46, suggesting that this protocol
might favor the electron-rich naphthalene-1-thiols (Scheme
4d). Finally, 1,2-di(naphthalen-1-yl)disulfane (7) was used as a
substrate to react with 2a under standard conditions or in the
absence of Cu(OAc)2·H2O, and no 3aa was produced in both
reactions (Scheme 4e). This experiment ruled out the
possibility that naphthalene-1-thiols were first oxidized to
disulfides and then participated in the cyclization reactions.
Based on the above results and referring literatures8,15 a

possible mechanism is thereby proposed (Scheme 5). At the
beginning, the conversion of [Cp*RhCl2]2 to Cp*Rh(OAc)2
might occur under treatment of −OAc, and then the active
catalyst Cp*Rh(OAc)2 might participate in the process of peri-
selective C−H bond activation of 1a to yield the intermediate
A.16 Further, the coordination of diphenylacetylene (2a) with
intermediate A generates complex B. Migratory insertion of
diphenylacetylene into Rh−C bond affords intermediate C.
Subsequently, the final product 2,3-diphenylbenzo[de]-

Scheme 3. Synthetic Applications of 3aa

Scheme 4. Mechanism Research Experiments
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thiochromene (3aa) and Rh(I) species would be thus obtained
by reductive elimination of C. The catalytic cycle would be
completed through the oxidation of Rh(I) to regenerate the
Cp*Rh(OAc)2 species with the aid of a copper oxidant.
To summarize, a new method has been proposed for the

convenient and efficient preparation of substituted naphtho-
[1,8-bc]thiopyrans via the sulfhydryl-directed peri-selective C−
H bond activation of diverse naphthalene-1-thiols with alkynes
under the catalysis of rhodium. Also, the regioselective
products can be synthesized in good yields with multiple
substituents. In particular, several synthetic applications as well
as the mechanistic investigation have been conducted. The
detailed mechanism and extensive applications of this approach
will be studied for the construction of organic optoelectronic
materials.
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